Introduction to Systems Biology Class 03

Katia de Paiva Lopes, PhD

Rush Alzheimer's Disease Center (RADC)

Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo (IAMSPE) Universidade Federal do Paraná (UFPR)

Network medicine

- 1. Social networks in human disease
- 2. Complex disease genetics
- 3. Transcriptomics network
- 4. Post-translational modifications of the proteome
- 5. Epigenetics and network medicine
- 6. Metabolomics
- 7. Integrative approaches

"Network Medicine: Complex Systems in Human Disease and Therapeutics." Book edited by Loscalzo, Barabási and Silverman, 2017.

State FL-Florida, GA-Georgia, NJ-New Jersey, PA-Pennsylvania, TX-Texas

Luke and Stamatakis. Annual review of public health, 2012

City LA-Los Angeles, NY-New York City, SF-San Francisco State FL-Florida, GA-Georgia, NJ-New Jersey, PA-Pennsylvania, TX-Texas

Characteristic	Interpretation
Input	Interview metadata
Nodes	Individuals with HIV-AIDS
Edges	Sexual partner
Topology	Scale-free

Luke and Stamatakis. Annual review of public health, 2012

- Definition of complex disease:
 - Caused by a combination of genetic, environmental, and lifestyle factors
 - Majority of diseases fall into this category, including several congenital defects and adult-onset diseases
 - Examples includes Alzheimer's disease, asthma, Parkinson's disease, multiple sclerosis, autoimmune diseases...

GWAS Help Unravel Complex Traits

Craig, J. (2008) Complex diseases: Research and applications. Nature Education.

Bellenguez et al. Nat Genetics, 2022

111,326 AD cases and 677,663 controls 75 risk loci, of which 42 were new at the time of analysis ¹⁰

Etiology	Rational
Common genetic variants	Common variants are likely to be found in GWAS with larger sample sizes.
Rare genetics variants	Resequencing studies could identify rare genetic determinants.
Interactions	Gene-gene and gene-environment interactions are likely important.
Inaccurate heritability estimates	Heritability estimates are usually generated under assumptions of no gene- gene or gene-environment interactions.
Phenotypic heterogeneity	Most complex diseases are likely to be syndromes with multiple disease subtypes.

There are 319 vertices and 255 edges. The network has 79 connected components and the largest one has 39 vertices. The width of an edge and the size of a vertex are in proportion to their weights. The length of an edge is for layout purposes only.

Epistesis network created with a panel of 1422 SNPs from patients with bladder cancer.

Integration of genetic variants with single Omics approach

Hu et al, BMC Bioinformatics, 2011.

Network constructed from eQTL SNPs in type I Diabetes

- Defined as the collection of all RNA molecules in the cell, including messenger RNA (mRNA)
- The abundance level of these molecules are commonly referred to as "gene expression"
- The reads are aligned to a reference genome -> counts are quantified by sample -> Joined in a matrix -> Normalizad and adjusted = How much a gene is expressed in a sample?

Mostafavi, Gaiteri et al. Nat Genetics, 2018.

Mostafavi, Gaiteri et al. Nat Genetics, 2018.

- Johnson et al. Nat Neuroscience, 2022 analyzed the proteome from ROSMAP
- They used WGCNA to create co-expression networks
- 8,619 proteins measured with TMT
- 516 individuals for the RNASeq

Johnson et al. Nat Neuroscience, 2022.

Protein modules not Correlat		ation	
Preserved in RNA network		Path	Cog
M7	MAPK/metabolism	0.37	-0.42
M13	RNA splicing	0.03	- <mark>0.10</mark>
M16	RNA binding	-0.15	0.07
M17	transcription	0.05	-0.04
M18	RNA splicing	- <mark>0.07</mark>	-0.03
M24	Ubiquitination	0.28	-0.25
M26	Complement/acute phase	0.07	-0.01
M29	Glycosylation/ER	-0.29	0.27
M32	Ambiguous	-0.13	0.18
M34	Ambiguous	- <mark>0.07</mark>	0.07
M35	Ambiguous	-0.06	0.05
M36	Neurotransmitter regulation	0.07	-0.09
M37	Endosome	-0.02	-0.06
M39	Translation initiation	0.09	-0.06
M40	Ambiguous	0.03	-0.10
M41	Ambiguous	-0.06	-0.08
M42	Matrisome	0.75	-0.40
M43	Ribonucleoprotein binding	0.04	-0.08

Johnson et al. Nat Neuroscience, 2022.

Tasks

• Q1: What is one example of a network without Omics data?

• Q2: Besides network, what other data analysis can be done in the context of System's Biology?

- Epigenetic marks include (not limited to):
 - Noncoding RNAs
 - Histone modifications
 - DNA methylation

• The complexity of methylation and demethylation events, and the interplay between the different epigenetic marks, supports the relevance of placing these observations in a network context.

Portela & Esteller. Epigenetic modifications and human disease. Nat Biotech, 2010.

Table 1 Epigenetic modifications in human diseases

Aberrant epigenetic mark	Alteration	Consequences	Examples of genes affected and/or resulting disease
Cancer			
DNA methylation	CpG island hypermethylation	Transcription repression	<i>MLH1</i> (colon, endometrium, stomach ¹¹), <i>BRCA1</i> (breast, ovary ¹¹), <i>MGMT</i> (several tumor types ¹¹), $p16^{INK4a}$ (colon ¹¹)
	CpG island hypomethylation	Transcription activation	MASPIN (pancreas ⁹²), S100P (pancreas ⁹²), SNCG (breast and ovary ⁹²), MAGE (melanomas ⁹²)
	CpG island shore hypermethylation	Transcription repression	HOXA2 (colon ²⁰), GATA2 (colon ²⁰)
	Repetitive sequences hypomethylation	Transposition, recombination genomic instability	<i>L1</i> (ref. 11), <i>IAP</i> ¹¹ , <i>Sat2</i> (ref. 107)
Histone modification	Loss of H3 and H4 acetylation	Transcription repression	$p21^{WAF1}$ (also known as $CDKN1A$) ¹¹
	Loss of H3K4me3	Transcription repression	HOX genes
	Loss of H4K20me3	Loss of heterochromatic structure	<i>Sat2</i> , <i>D4Z4</i> (ref. 107)
	Gain of H3K9me and H3K27me3	Transcription repression	CDKN2A, RASSF1 (refs. 115–116)
Nucleosome positioning	Silencing and/or mutation of remodeler subunits	Diverse, leading to oncogenic transformation	BRG1, CHD5 (refs. 127–131)
	Aberrant recruitment of remodelers	Transcription repression	PLM-RARa ¹⁰³ recruits NuRD
	Histone variants replacement	Diverse (promotion cell cycle/destabilization of chromosomal boundaries)	H2A.Z overexpression/loss

Portela & Esteller. Epigenetic modifications and human disease. Nat Biotech, 2010.

Neurological disorders			
DNA methylation	CpG island hypermethylation	Transcription repression	Alzheimer's disease (<i>NEP</i>) ¹³⁵
	CpG island hypomethylation	Transcription activation	Multiple sclerosis (<i>PADI2</i>) ¹³⁵
	Repetitive sequences aberrant methylation	Transposition, recombination genomic instability	ATRX syndrome (subtelomeric repeats) ^{135,143}
Histone modification	Aberrant acetylation	Diverse	Parkinson's and Huntington's diseases ¹³⁵
	Aberrant methylation	Diverse	Huntington's disease and Friedreich's ataxia ¹³⁵
	Aberrant phosphorylation	Diverse	Alzheimer's disease ¹³⁵
Nucleosome positioning	Misposition in trinucleotide repeats	Creation of a 'closed' chromatin domain	Congenital myotonic dystrophy ¹⁵¹
Autoimmune diseases			
DNA methylation	CpG island hypermethylation	Transcription repression	Rheumatoid arthritis (<i>DR3</i>) ^{154,155}
	CpG island hypomethylation	Transcription activation	SLE (<i>PRF1, CD70, CD154, AIM2</i>) ⁶
	Repetitive sequences aberrant methylation	Transposition, recombination genomic instability	ICF (<i>Sat2, Sat3</i>), rheumatoid arthritis (<i>L1</i>) ^{152,155}
Histone modification	Aberrant acetylation	Diverse	SLE (<i>CD154, IL10</i> , IFN-γ) ⁶
	Aberrant methylation	Diverse	Diabetes type 1 (<i>CLTA4, IL6</i>) ¹⁵⁹
	Aberrant phosphorylation	Diverse	SLE (NF-κB targets)
Nucleosome positioning	SNPs in the 17q12-q21 region	Allele-specific differences in nucleosome distribution	Diabetes type 1 (CLTA4, IL6)
	Histone variants replacement	Interferes with proper remodeling	Rheumatoid arthritis (histone variant macroH2A at NF-κB targets) ¹⁵⁷

hsa-let-7f-5p: **2** shared interactions hsa-miR-126-5p: **2** shared interactions hsa-miR-146a-5p: **6** shared interactions hsa-miR-17-5p: **7** shared interactions hsa-miR-451a: **3** shared interactions hsa-miR-486-5p: **0** shared interactions (Excluded from network) hsa-miR-589-5p: **1** shared interactions hsa-miR-941: **0** shared interactions (Excluded from network)

- The molecules include carbohydrates, sugar, fatty acids, lipids, nucleotides, amino acids and short peptide chains.
- The total number of metabolites remains unknown and varies by specie.
- Challenges in measurement includes:
 - Differences in physical compounds
 - Analytical tools as nuclear magnetic resonance (NMR) and mass spectrometry (MS) have a linear dynamic range but the molecule concentration will exceed this
 - Differences in chemical stability

Book edited by Loscalzo, Barabási and Silverman, Network Medicine 2017.

Welcome to HMDB Version 5.0

https://hmdb.ca/

Book edited by Loscalzo, Barabási and Silverman, Network Medicine 2017.

Characteristic	Interpretation
Input	Combined genetic associations with metabolite concentrations
Nodes	Circular = set of metabolites belonging to the same pathway Diamond = Genetic locus
Edges	Gaussian graphical model (GGN) results. At least one connection in the underlying metabolite network between two metabolites
Тороlоду	Scale-free

Numbers associated with each pathway name indicate the number of metabolites contained within each pathway node.

Shin et al. Nat Genetics, 2013.

Medical and pharmacological relevance of metabolomic associations

Tasks

• Q1: List the networks we talked about today.

• Q2: Why network is widely used in Systems Biology?

Modeling the enigma of complex disease etiology

cultural, economic status, adverse childhood experiences

Network of networks

Thank you!

katiaplopes@gmail.com @lopeskp