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Agenda

* Network as a tool of System’s Biology

* Network basics and concepts

* WGCNA method for coexpression networks
* Noise in gene expression

* Example of a coexpression network

* Tutorials to follow
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Hands on!




Networks as a tool in Systems Biology

Summary of molecular, cellular, tissue and technical regulatory sources of observed gene—gene

correlations/ coexpression links. o _ _
Gaiteri et al. Genes, Brain and Behavior, 2014. 3




(a) Global coexpression networks
Generated by multiple regulatory systems

Provides network information on every gene
Gene position may be related to functional significance

(e) Additional molecular networks
Provides additional perspectives on key genes

Map causal molecular interactions

onto DC and DC genes

Contrast disease gene positions in

different molecular networks
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(b) Network decomposition into modules
Identifies correlated gene sets, sometimes with coherent funtions
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“Modules” are in fact highly overlapping
Module membership should be verified by resampling data

Gaiteri et al.
Genes, Brain and Behavior, 2014.

(c)Within-module disease traits
Multiple cellular functions even within module

May be enriched for DE, DC or DV genes

Can aggregate expression characteristics
to priorize molecular systems in disease

(d) Local coexpression - regulatory changes
Fine level of detail for prioritizing specific genes

Disease target selection may combine single-gene trait correlations,
module correlations, differential coexpression, differential variation,

’
O O adjacent known disease genes all into a single ranking

Biophysical sources
Gene of coexpression
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Key terminology

Networks are composed of nodes that are connected by edges (links).

01 02 Adjacency matrix
\ / 0 0 1 0 0
3 ¥ — Hubgene
0 0 1 0 0
1 1 0 1 0
4 0 0 1 0 1
Edge < 0 0 0 1 0

5 ) —» Node

Loscalzo, Barabasi, Silverman. Network Medicine Book, 2017.
Figure created with Biorender.



Key terminology

For a particular node, the number of edges directly linked to that node is the
degree. The degree distribution is defined by the frequencies of edges in the
network.

Degree distribution
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Loscalzo, Barabasi, Silverman. Network Medicine Book, 2017.

Figure created with Biorender. ©




Key terminology

A path within a network is a connection between two nodes
that follows the edges. The length of the path is quantified
by the number of edges included in the path.

Shortest path lengths

Nodes 1-2 | 1-3 | 14 1-5 2-3 | 24 2-5 3-4 | 3-5 4-5

Shortest path | 1-3-2 | 1-3 | 1-3-4 | 1-3-4-5 | 2-3 | 2-3-4 | 2-3-4-5 | 3-4 | 3-4-5 | 45

Path length 2 1 2 3 1 2 3 1 2 1

Mean shortest length = 18/10=1.8

Loscalzo, Barabasi, Silverman. Network Medicine Book, 2017.
Figure created with Biorender. 7




Key terminology

Small word effect = the path lengths between nodes are
surprisingly small (Watts and Strogatz, 1998).

The betweenness of a node or edge assesses how often that

network is present within the group of shortest paths in the
network.

Betweenness centralities

Nodes 1 2 3 4 5

Shortest paths including node | 4 4 9 7 4

Betweenness 04/04(09|0.7,04

(N of shortest paths including node)
N of shortest path

Betweenness =

Loscalzo, Barabasi, Silverman. Network Medicine Book, 2017.
Figure created with Biorender.
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Graph properties of transcription networks

* Transcription networks are sparse!

* What is the maximal number of edges in a network with N nodes?
Each node can have an outgoing edge to each of the N-1 other
nodes for a total of E,_, = N(N-1) edges.

* The number of edges found in transcription networks, E, is much
smaller. Being sparse, in the sense that E/E, .., << 1.

max

* Transcription networks are the product of evolutionary selection.
It’s easy to lose and edge in a network.

Uri Alon. An Introduction to Systems Biology. Book, 2015.




Network topology

(a) Random network (b) Scale-free network

Source: https://en.wikipedia.org/wiki/Hub_(network science)

A scale-free network is a network whose distribution follows a power law. Barabasi et al. found many types of
network in many domains to be approximately scale-free, including metabolic and protein interaction.

Random Distribution Power Law Distribution

p(k) (number of nodes of size k)

p(k) (number of nodes of size k)

\ 4

\ 4

k (size of node) k (size of node) 10
http://jitha.me/power-law-working-hard-enough/



Tasks

* Q1: Write some examples of what can alter links in a co-expression network.

* Q2: What is a hub gene?




The beauty of applying computational methods to biological data
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Figure generated with Biorender.
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Example of gene expression data (RNASeq)

Gene ID

ENSG00000197958
ENSG00000119048
ENSG00000230715
ENSG00000173113
ENSG00000143514
ENSG00000079332
ENSG00000000419
ENSG00000129083
ENSG00000143368
ENSG00000117133
ENSG00000173120
ENSG00000006652
ENSG00000126804
ENSG00000218283
ENSG00000186407

Gene Name

RPL12
UBE2B
ENSG00000230715
TRMT112
TP53BP2
SAR1A
DPM1
CoPB1
SF3B4

RPF1
KDM2A
IFRD1
ZBTB1
MORF4L1P1
CD300E

adipose
tissue

413.0
66.0
25.0
72.0
16.0
89.0
78.0
61.0
55.0
42.0
39.0
28.0
28.0
73.0
2.0

adrenal
gland

567.0
141.0
21.0
156.0
22.0
65.0
136.0
89.0
55.0
58.0
36.0
35.0
24.0
101.0
0.3

bone
marrow

995.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0
99.0

cerebral
cortex

179.0
99.0
8.0
77.0
73.0
69.0
63.0
58.0
45.0
36.0
31.0
29.0
26.0
108.0
0.6

https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2836/Results

colon

595.0
64.0
16.0
52.0
21.0
46.0
92.0
104.0
58.0
64.0
35.0
18.0
26.0
60.0
1.0

duodenum

488.0
53.0
26.0
44.0
17.0
28.0
71.0
85.0
61.0
46.0
36.0
28.0
23.0
49.0
0.9

endometrium

908.0
136.0
30.0
138.0
50.0
87.0
139.0
142.0
112.0
90.0
89.0
47.0
48.0
146.0
2.0

esophagus

656.0
93.0
10.0
58.0
46.0
51.0
101.0
89.0
71.0
64.0
65.0
21.0
25.0
52.0
1.0

13



Types of RNASeq downstream analysis

* Differentially Expressed Genes (DEG)
* Age-related analysis (continuous data)
* Sample clusterization

* Functional Enrichment Analysis (FEA)

e Networks

14



Weighted Gene Co-expression

Network Analysis
(WGCNA)



Background

WGCNA: an R package for weighted correlation
network analysis

Peter Langfelder and Steve Horvath
with help of many other contributors

Semel Institute for Neuroscience and Human Behavior, UC Los Angeles (PL),
Dept. of Human Genetics and Dept. of Biostatistics, UC Los Angeles (SH)

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/

16



Background

WGCNA analysis 1s a systems biology method for describing the correlation patterns

among genes across samples.

[t can be used for:

»Finding modules of highly correlated genes

»For summarizing clusters using the module eigengene or an intramodular hub gene
» For relating modules to one another and to external sample traits

»For calculating module membership measures

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/ WGCNA/
17



Overview

Construct a gene co-expression network

Rationale: make use of interaction patterns among genes -

Tools: correlation as a measure of co-expression

Identify modules
Rationale: module (pathway) based analysis
Tools: hierarchical clustering, Dynamic Tree Cut

A. Gene dendrogram and module colors

Relate modules to external information
Array Information: clinical data, SNPs, proteomics
Gene Information: ontology, functional enrichement

Rationale: find biologically interesting modules

4

Study module relationships

Rationale: biological data reduction, systems-level view

Tools: Eigengene Networks

]

Find the key drivers in interesting modules
Rationale: experimental validation, biomarkers
Tools: intramodular connectivity, causality testing

https://pdfs.semanticscholar.org/dc7e/b33db056e083c04d90ee7c5d8e765088964 3. pdf

18



Background

Construct a gene-gene similarity network

Divide network into modules

Group genes with similar expression

Source: Leonore Wigger

with Frédéric Burdet and Mark Ibberson
19



Background

Identify “hub” genes in modules

Optional: weight
Correlate phenotypic traits to gene modules - glucose

abdominal fat ‘

cholesterol

insulin

> 2 ]

blood

P

Source: Leonore Wigger
with Frédéric Burdet and Mark Ibberson

20



Background

Hypothesis

Genes with similar expression patterns are interesting because they may be:

» Tightly co-regulated
» Functionally related
» Members of the same pathway

WGCNA encourages hypotheses about genes based on their close network neighbors.

Source: Leonore Wigger

with Frédéric Burdet and Mark Ibberson
21



Glossary — Co-expression network

The Basis of WGCNA: Weighted Correlation Network of Genes

Adjacencies
Compute a correlation raised to a power
between every pair of genes (i ,j )

The method amplifies disparity between strong

_ : 1)]|P
a;; = |Ccor \1, :
i,j | ( J )| and weak correlations

Example: Power term ff = 4

Correlations Adjacencies / Strong corr.

cor (i,j)=0.8 > |0.8|* = 0.4096
cor (k,l)=0.2 > |0.2|* = 0.0016

.

Weak corr.
0.8/0.2: N 0.4096/0.0016:

4-fold difference 256-fold difference

Source: Leonore Wigger
with Frédéric Burdet and Mark Ibberson



Background

Adjacency matrix of 4 genes

a;; genel | gene2 | gene3 | gened

genel |1 [0.55 ] [0.39 ] 0.09
gene2 |0.55 |1 048 |0.11
gene3 | 0.39 0.48 1 0.21

gened4 | 0.09 0.11 021 1

Gene 4 Gene 2

Gene 3
Remove the weakest links.

Work with all edges of the fully connected network.

Connectivity (degree) in a weighted network.

Gene 1

Example for connectivity (k) of gene 1:

0.55+0.39+0.09=1.03

Source: Leonore Wigger
with Frédéric Burdet and Mark Ibberson



Background

According to WGCNA the co-expression matrix is not enough! The similarity
between genes should be reflected at the expression and the network topology level.

Compute similarity/dissimilarity between genes

Topological Overlap Measure (TOM):
*[s a pairwise similarity measure between network nodes (genes)
*TOMI(1,)) 1s high 1f genes 1,) have many shared neighbors
*A high TOM(1,)) implies that genes have similar expression patterns

Source: Leonore Wigger
with Frédéric Burdet and Mark Ibberson



Background

Signed TOM needs as input not only the connection strengths (aij — adjacency matrix), but also the sign of the
correlations. The modified adjacency matrix:

&z'j = Q45 X sign (COI‘(';L‘Z',’.'EJ')) . (1)

The signed TOM is then defined as
Adjacency matrix

TOM;™ =

Connectivities of nodes
[ai]] +[Zu#z,] &iuauj] (2)
ming ki, kj)+ 1 — |@| ;

Where k; and k; denote the connectivities of nodes i and j:

f: = Z |aui| . K= connectivity degree based on neighbors. (3)
uF#i

In contrast, unsigned TOM uses absolute values in the numerator:
|@ij| + X uri j |Giutug|
min(k;, k5) + 1 — |ay|

Source: Peter Langfelder, 2013. Signed vs Unsigned.
Technical report.



Glossary — TOM

aij + Zu;éz',j &z’u&uj

. ;_z'gned —
TOM;; min(k;, kj) + 1 — |ag]

1 — Count numbers of shared neighbors:
Using the connectivity degree (k)

2 — Normalize values between 0 and 1:
TOM(ij) = 0: no overlap of network neighbors
TOM(i,j) = 1: 1dentical set of network neighbors

3 — Then, we can calculate the (dis)similarity measure distTOM = 1-
TOM.

Source: Peter Langfelder, 2013. Signed vs Unsigned. Technical report.
Leonore Wigger with Frédéric Burdet and Mark Ibberson



Background

Weighted correlation network

from gene expression data Gene clustering dendrogram

Gene 1

gened

gene3
genel gene2

(dis)similarity between genes:
Topological Overlap Measure (TOM)

Source: Leonore Wigger
with Frédéric Burdet and Mark Ibberson



Height

0.96

0.94

0.92

0.90

Background — Signed network

Gene Clustering on TOM-based dissimilarity

28



Background — Signed network

Divide clustered genes into modules using the Dynamic tree cut algorithm

Height
0.94 0.96

0.92
1

0.90
L

Dynamic Tree Cut

Hierarchical
Gene dendrogram and module colors clusters of genes
N I ,
1 3 ‘ 3

R o

29



WGCNA has a visual way to pick a power term:

We need to choose a soft thresholding power that approximately fits a scale free network. It means, the lowest
power on or above the red horizontal line.

Mean connectivity plot: mean connectivity drops as power goes up.

Scale independence Mean connectivity
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Glossary — Module Eigengene

Next step: merge very similar modules using the eigengenes.

Eigengene 1s defined as the first principal component of a given module. It can be

considered a representative of the gene expression profiles in a module. It’s a way to
summarize the expression data from a module.

Eigengenes are used for:

e Modules can be correlated with one another
e Modules can be correlated with external traits

32



Steps to calculate the eigengenes

Clustering eigengenes

MEList = moduleEigengenes(datExpr, colors = dynamicColors)

MEs = MEList$eigengenes

MEDiss = l-cor(MEs)

METree = hclust(as.dist(MEDiss), method = "average")

plot (METree, main = "Clustering of module eigengenes",

xlab = """, gub = "")
MEDissThres = 0.25

abline(h=MEDissThres, col

33



Ing eigengenes

Cluster

Height cut of 0.25, corresponding to correlation of (.75 to merge

Clustering of module eigengenes
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Dynamic Tree Cut

Merged dynamic

Merge modules

Using the
Cluster Dendrogram mergeCloseModules
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Module-trait relationships

TPM data without correction

Data not adjusted

MEred

MEturquoise

MEsalmon

MEcyan

MElightcyan

MEpink

zgreenyellow

MEblack

MEblue

MEmagenta

Module-trait relationships

(p values)

Pearson correlation
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Artifacts in reconstruction of gene co-expression networks
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Noise In gene expression
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Noise In gene expression
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Tasks

* Q1: What are the input data for the WGCNA pipeline?

* Q2: Why is it so important to take care of noise in the data?

* Q3: What is the hypothesis behind a co-expression network?




Networks for the
“Myeloid cells in Neurodegenerative
Diseases” (MyND) project



Green module (567 genes)
137 mitochondrial genes, 23 up-DEGs, 2 PD-GWAS
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Navarro et al. Nat Aging, 2021.

Proteolysosomal genes



Salmon module (138 genes)
28 proteolysosomal genes, 8 DEGs, 3 PD-GWAS

Navarro et al. Nat Aging, 2021.
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Tutorials to follow



WGCNA tutorials

The flowchart of the tutorial is shown below.

Data input, clearing,

PIepIocessing
Network construction Altemate network F:onstruction and
Module detection ——- module detection methods
Relate modules Network vizualization

Gene ontolo
Y to extemal traits

el
Functional ennchment \

Study relationzhips Export to extemal visnalization
arnong traits and modnles and analyasis software

nung eigengene networks _ Eind ke_,y drivers
in interesting modules

Diagnostics and sanity checks

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/ WGCNA /Tutorials/



https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/

o 0 b w

WGCNA tutorials

. Data input and cleaning: PDF document, R script

. Network construction and module detection

a. Automatic, one-step network construction and module detection: PDF document, R script

b. Step-by-step network construction and module detection: PDF document, R script

c. Dealing with large datasets: block-wise network construction and module detection: PDF document, R script

Relating modules to external clinical traits and identifying important genes: PDF document, R script

Interfacing network analysis with other data such as functional annotation and gene ontology PDF document, R script

Network visualization using WGCNA functions: PDF document, R script

Export of networks to external software: PDF document, R script

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/ WGCNA /Tutorials/



https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/

To do — Networks final project

R code:

WGCNA: monocytes dataset of individuals diagnosed with Parkinson's Disease.
https://rushalz.github.io/Intro Systems Biology/WGCNA rnaseq monocytes.html

WGCNA: Thoracic spinal cord RNASeq of individuals diagnosed with Amyotrophic Lateral
Sclerosis. https://rushalz.github.io/Intro Systems Biology/WGCNA rnaseq.html
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https://rushalz.github.io/Intro_Systems_Biology/WGCNA_rnaseq_monocytes.html
https://rushalz.github.io/Intro_Systems_Biology/WGCNA_rnaseq.html

Thank you!

katiaplopes@gmail.com
@lopeskp



