Introduction to Systems Biology Class 01

Katia de Paiva Lopes, PhD

Rush Alzheimer's Disease Center (RADC)

Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo (IAMSPE) Universidade Federal do Paraná (UFPR)

What is this course about + goals

High-level understanding of biological systems with a focus on Networks for Medicine and Health Sciences

Major goal: Hands-on practice!

Systems Biology as Defined by NIH

"Ask five different astrophysicists to define a black hole, the saying goes, and you'll get five different answers. But ask five biomedical researchers to **define systems biology**, and you'll get **10 different answers** . . . or maybe more." Christopher Wanjek

"Some people think of it as **bioinformatics**, taking an enormous amount of information and processing it. The other school of thought thinks of it as **computational biology**, computing on how the systems work. You need both of these parts."

Ron Germain, chief of NIAID's Laboratory of Systems Biology

https://irp.nih.gov/catalyst/19/6/systems-biology-as-defined-by-nih

I want to listen to you

Define Systems Biology

Systems Biology – the origins

Systems Biology – brief timeline

Hallmarks

1953 – Elucidation of DNA structure

X-ray crystallography By Rosalind Franklyn

"Molecular structure of nucleic acids"

7

Figure: https://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397/

Hallmarks

The first bioinformatician

Margareth Dayhoff, PhD (1925 – 1983)

8

Margaret Dayhoff (1925 - 1983)

Born: Philadelphia, Pennsylvania, United States. Dayhoff is known as the founder of bioinformatics. This she did by pioneering the application of mathematics and computational techniques to the sequencing of proteins and nucleic acids and establishing the first publicly available database for research in the area. (Photo credit: Ruth E Dayhoff, National Library of Medicine).

Margaret Dayhoff: timeline of key events

Date	Event
11 Mar 1925	Margaret Dayhoff was born in Philadelphia, Pennsylvania, USA
1965	Atlas of Protein Sequence and Structure published
September 1980	First DNA sequence database created

1980	Largest nucleic acid sequence database in the world made available free over telephone network
5 Feb 1983	Margaret Dayhoff died in Silver Spring, Maryland, USA

http://www.whatisbiotechnology.org/people/Dayhoff

NATIONAL BIOMEDICAL RESEARCH FOUNDATION MODILINE STRUFT Infer Spring Maryland

Margaret O. Dayhoff Richard V. Eck Marie A. Chang Minnie R. Sochard

209,159 structures PDB – Sep 4th, 2023

Hallmarks

• 1990 – Launch of The Human Genome Project.

Private vs Public

Craig Venter, Ari Patrinos, and Francis Collins

https://web.ornl.gov/sci/techresources/Human_Genome/project/privatesector.shtml

Gene fragment sequencing – Venter strategy

This......is..the.....Struc....ture...,,,....of... your....(...genome...)....

> Words = genes Ellipsis = introns Punctuation = regulatory regions

Struct, of your genome

12

Genome sequencing – Venter strategy

- 1992 Venter left INS and started his own Institute:
- **IGOR**: Institute for Genome Research
- **TIGR**: The Institute for Genome Research
- 1993 Expanded his strategy of sequencing genes fragments to start sequencing complete genes and genomes.
- Collaboration: Bert Volgestein, Kenz Kinzler (cancer research) Hamilton Smith (bacteriology research)

1995 - 1st genome sequenced

Craig Venter, Hamilton Smith, Claire Fraser and collaborators

Haemophilus influenza

Common name: Haemophilus influenza

14

- What is it? A non-moving rod-shaped bacterium that causes meningitis.
- Why was it sequenced? This was the first bacteria to be sequenced.
- Who sequenced it? Craig Venter and his team at The Institute for Genomic Research in Rockville, Maryland, USA.
- How many bases? 1.8 million
- How many chromosomes? 1 circular chromosome

Human genome

1993 – Watson left the Human Genome Project

Francis Collins was nominated as the new PI of the Project

Caenorhabditis elegans genome

1998 – Launch of the Celera company = Accelerate. Dec 1998 - Public sector publish the *Caenorhabditis elegans* genome.

Fig: https://andor.oxinst.com/learning/view/article/advantages-of-using-caenorhabditis-elegans-as-a-model-organism 16

Drosophila melanogaster genome

Sept 1999 – Celera announced the work on *Drosophila melanogaster* genome.

By this time, people were convinced by the shotgun method.

Source: "The gene", book from Siddhartha Mukherjee

- Human Genome sequenced
- 2001

2000 – 2010: High-throughput bioinformatics

Gauthier et al, 2018 https://www.ncbi.nlm.nih.gov/genbank/statistics/

Next Generation Sequencing - NGS

Platform Technology		Model	Length of read	Throughput (per day)	Company	
Automated Sanger 20 sequence	Capillary electrophoresis, ye [®] -terminator istry	3730 xl	Up to 900 bp	<3 Mb	Applied Biosystems	
454	Pyrosequencing	$GS FLX^+$	500–700 bp	700 Mb	454 Life Sciences (Roche)	
SOLiD™	Sequencing by ligation	5500 xl	75 bp	30 Gb	Life Technologies (ABI)	
Illumina	Clonal single molecule array	HiSeq2000	50–150 bp	Up to 55 Gb	Illumina, Inc.	
Complete genomics	DNA nanoball array, ligation-based sequencing	N/A ²	70 bp	8.8 Gb	Complete Genomics	
Ion Torrent	Hydrogen ion semiconductor	Ion 316 Chip	100 bp	100 Mb ³	Life Technologies (ABI)	
HeliScope™	Imaging single nucleotide incorporation	Single Molecule Sequencer	35 bp	1 Gb	Helicos	
PacBio	SMRT [™] technology	PacBio RS	>1,000 bp	500 Mb ⁴	Pacific Biosciences	

Li et. al. Review Cancers, 2011.

Tasks

• Q1: What do we mean when we say that the **Human genome** sequencing brought more **questions** than expected?

• Q2: What are the **steps after** sequencing an organism?

 Q3: How many Mammals are deposited on the NCBI? <u>https://www.ncbi.nlm.nih.gov/genome/browse/</u> -> Filters -> Subgroup

Distinct types of biological data

Gene expression regulation

Slide: Ricardo Vialle, 2020.

OMIC's data

Christopher Buccitelli and Matthias Selbach, Nature Review Genetics, 2020.

Phylogenetic inference

https://www.khanacademy.org/science/high-school-biology/hs-evolution/hs-phylogeny/a/phylogenetic-trees

Protein structure - examples

PROTEIN DATA BANK PROTEIN DATA BANK

> PDB file 26,186 lines

> > O C C C O O N C C O

C C

O N

Ν

С

С

o C

0 N C C

6VSB

Prefusion 2019-nCoV spike glycoprotein with a single receptor-binding domain up

DOI: 10.2210/pdb6VSB/pdb EMDataResource: EMD-21375

Classification: VIRAL PROTEIN Organism(s): Severe acute respiratory syndrome coronavirus 2 Expression System: Homo sapiens Mutation(s): Yes ④

Deposited: 2020-02-10 Released: 2020-02-26

ATOM	4094	С	GLU	Α	702	198.955	208.031	189.462	1.00	92.70	
ATOM	4095	0	GLU	Α	702	197.882	207.525	189.126	1.00	92.70	
ATOM	4096	CB	GLU	Α	702	199.082	206.838	191.673	1.00	92.70	
ATOM	4097	CG	GLU	Α	702	199.697	205.635	190.963	1.00	92.70	
ATOM	4098	CD	GLU	Α	702	199.988	204.476	191.893	1.00	92.70	
ATOM	4099	OE1	GLU	Α	702	201.053	203.843	191.734	1.00	92.70	
ATOM	4100	OE2	GLU	Α	702	199.156	204.197	192.780	1.00	92.70	
ATOM	4101	N	ASN	Α	703	199.831	208.510	188.586	1.00	84.21	
ATOM	4102	CA	ASN	Α	703	199.699	208.320	187.153	1.00	84.21	
ATOM	4103	С	ASN	Α	703	200.907	207.559	186.626	1.00	84.21	
ATOM	4104	0	ASN	Α	703	201.988	207.573	187.218	1.00	84.21	
ATOM	4105	CB	ASN	Α	703	199.550	209.661	186.421	1.00	84.21	
ATOM	4106	CG	ASN	Α	703	200.860	210.409	186.290	1.00	84.21	
ATOM	4107	OD1	ASN	Α	703	201.717	210.349	187.168	1.00	84.21	
ATOM	4108	ND2	ASN	Α	703	201.020	211.126	185.185	1.00	84.21	
ATOM	4109	N	SER	Α	704	200.707	206.882	185.501	1.00	80.18	
ATOM	4110	CA	SER	Α	704	201.755	206.092	184.866	1.00	80.18	
ATOM	4111	С	SER	Α	704	201.885	206.559	183.427	1.00	80.18	
ATOM	4112	0	SER	Α	704	201.023	206.258	182.596	1.00	80.18	
ATOM	4113	CB	SER	А	704	201.438	204.597	184.928	1.00	80.18	
ATOM	4114	OG	SER	А	704	202.408	203.840	184.227	1.00	80.18	
ATOM	4115	Ν	VAL	А	705	202.953	207.304	183.135	1.00	73.36	
ATOM	4116	CA	VAL	А	705	203.196	207.730	181.766	1.00	73.36	
ATOM	4117	С	VAL	А	705	203.334	206.500	180.885	1.00	73.36	

🔳 Display Lites 🖲

174507 Biological Macromolecular Structures Enabling Breakthroughs in Research and Education

Fasta file

>6VSB_1|Chains A,B,C|Spike glycoprotein|Severe acute respiratory syndrome coronavirus 2 (2697049)

BANK

PROTEIN

DATA

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFS NVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLL IVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPF LMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINI TRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCAL DPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAW NRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPK KSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDI TPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQ TRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQSIIAY (...)

6VSB

Prefusion 2019-nCoV spike glycoprotein with a single receptor-binding domain up

DOI: 10.2210/pdb6VSB/pdb EMDataResource: EMD-21375

Classification: VIRAL PROTEIN Organism(s): Severe acute respiratory syndrome coronavirus 2 Expression System: Homo sapiens Mutation(s): Yes ④

Deposited: 2020-02-10 Released: 2020-02-26

Protein-protein interaction

Agile Protein Interactomes DataServer

some 3D structure is known or predicted

Whole Genome Sequence

##fileformat=VCFv4.0					
##fileDate=20090805					
##source=myImputationProgramV	3.1				
##reference=1000GenomesPilot-	NCBI36				
##phasing=partial					
##INFO= <id=ns,number=1,type=1< td=""><td>nteger,Descrip</td><td>ption="Nu</td><td>mber of Samples With Data"></td><td></td><td></td></id=ns,number=1,type=1<>	nteger,Descrip	ption="Nu	mber of Samples With Data">		
##INFO= <id=dp,number=1,type=1< td=""><td>nteger,Descrip</td><td>ption="To</td><td>tal Depth"></td><td></td><td></td></id=dp,number=1,type=1<>	nteger,Descrip	ption="To	tal Depth">		
##INFO= <id=af,number=.,type=f< td=""><td>loat,Descripti</td><td>ion="Alle</td><td>le Frequency"></td><td></td><td></td></id=af,number=.,type=f<>	loat,Descripti	ion="Alle	le Frequency">		
##INFO= <id=aa,number=1,type=s< td=""><td>ring,Descript</td><td>tion="Anc</td><td>estral Allele"></td><td></td><td></td></id=aa,number=1,type=s<>	ring,Descript	tion="Anc	estral Allele">		
##INFO= <id=db,number=0,type=b< td=""><td>Lag,Descriptic</td><td>on="dbSNP</td><td>membership, build 129"></td><td></td><td></td></id=db,number=0,type=b<>	Lag,Descriptic	on="dbSNP	membership, build 129">		
##INFO= <id=h2,number=0,type=h< td=""><td>Lag,Descriptic</td><td>on="HapMa</td><td>p2 membership"></td><td></td><td></td></id=h2,number=0,type=h<>	Lag,Descriptic	on="HapMa	p2 membership">		
##FILTER= <id=q10,description=< td=""><td>'Quality below</td><td>w 10"></td><td></td><td></td><td></td></id=q10,description=<>	'Quality below	w 10">			
##FILTER= <id=s50,description=< td=""><td>'Less than 50%</td><td>& of samp</td><td>les have data"></td><td></td><td></td></id=s50,description=<>	'Less than 50%	& of samp	les have data">		
##FORMAT= <id=gt,number=1,type< td=""><td>=String,Descri</td><td>iption="G</td><td>enotype"></td><td></td><td></td></id=gt,number=1,type<>	=String,Descri	iption="G	enotype">		
##FORMAT= <id=gq,number=1,type< td=""><td>=Integer,Desci</td><td>ription="</td><td>Genotype Quality"></td><td></td><td></td></id=gq,number=1,type<>	=Integer,Desci	ription="	Genotype Quality">		
##FORMAT= <id=dp,number=1,type< td=""><td>=Integer,Desci</td><td>ription="</td><td>Read Depth"></td><td></td><td></td></id=dp,number=1,type<>	=Integer,Desci	ription="	Read Depth">		
##FORMAT= <id=hq, number="2," td="" type<=""><td>=Integer,Desci</td><td>ription="</td><td>Haplotype Quality"></td><td></td><td></td></id=hq,>	=Integer,Desci	ription="	Haplotype Quality">		
#CHROM POS ID REF	ALT QUAL FI	ILTER INF	0	FORMAT	N
A00001 NA00002	1A00003				
20 14370 rs6054257 G	A 29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ	:DP:
HQ 0 0:48:1:51,51 1 0:48 <mark>:</mark> 8:51	,51 1 <mark>/1:43:5:</mark> .	• , •			
20 17330 . Т	A 3	q10	NS=3;DP=11;AF=0.017	GT:GQ	:DP:
HQ 0 0:49:3:58,50 0 1:3:5:65,	3 0/0:41:3				
20 1110696 rs6040355 A	G,T 67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=5	T;DB GT:GQ	:DP:
HQ 1 2:21:6:23,27 2 1:2:0:18,	2 2/2:35:4				
20 1230237. Т	. 47	PASS	NS=3;DP=13;AA=T	GT:GQ	:DP:
HQ 0 0:54:7:56,60 0 0:48:4:51	,51 0/0:61:2				
20 1234567 microsat1 GTC1	G,GTACT 50	PASS	NS=3;DP=9;AA=G	GT:GQ	:DP
0/1.35.4 0/2.17.2	1/1:40:3				

VCF

file

32

https://www.internationalgenome.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-40/

The Cancer Genome Atlas TCGA

Single-cell analysis

What are the cell types in a drop of blood?

Hao et al, Biorxiv 2020.

Single-cell analysis

What are the cell types in the human brain?

Levels of organization

Distinct methods to study distinct systems

Data integration

Bali Pulendran and Mark M. Davis. Science, 2020.

Tasks

• Q1: How does the availability of vast and diverse biological data sources impact the advancement of systems biology research?

• Q2: Where the *SPP1* gene is expressed? <u>https://www.gtexportal.org/home/</u>

• Q3: List the information we can get from a single-cell UMAP representation.

Reading recommendations

REVIEW SUMMARY

IMMUNOLOGY

The science and medicine of human immunology

Bali Pulendran* and Mark M. Davis

https://science.sciencemag.org/content/369/6511/eaay4014

Thank you!

katiaplopes@gmail.com @lopeskp