Biological contribution of phenotypic data on cytokine expression in the bulk RNAseq | 1,210 unique samples from DLPFC region
data_bulk <- load ("C:/Users/beker/OneDrive/Documentos/Mestrado/GitHub/Cytokines/bulk_RNAseq/bulk_DLPFC_2022.Rdata")
phenotype_dt <- pheno_DLPFC
# upload list of cytokines
file_path <- "C:/Users/beker/OneDrive/Documentos/Mestrado/GitHub/Cytokines/list_cytokines/T015/list_cytokines_T015.txt"
cytokines <- read.delim(file_path, header = TRUE, check.names = FALSE, stringsAsFactors = FALSE)
cytokines <- subset(cytokines, select = -family) # I removed the 'family' column here because it had NA values
ensembls = cytokines$ensembl
## png
## 2
## png
## 2
vp_df <- as.data.frame(vp)
colnames(vp_df) <- c("Cognitive decline", "Age of death", "Global AD burden", "Tangles density", "Amyloid accumulation", "Sex", "Cerebral amyloid angiopathy", "Apoe 4", "AD diagnosis", "Residuals")
# Formatando para garantir que o excel br não altere a notação científica dos valores
vp_df <- vp_df %>%
mutate(across(where(is.numeric), ~ format(., scientific = TRUE, digits = 15)))
# Saving xlsx
write.xlsx(vp_df, file = "C:/Users/beker/OneDrive/Documentos/Mestrado/GitHub/Cytokines/bulk_RNAseq/T039/p_values_vp_bulk_T039.xlsx", rowNames = TRUE)
## R version 4.3.2 (2023-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 11 x64 (build 26100)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=Portuguese_Brazil.utf8 LC_CTYPE=Portuguese_Brazil.utf8
## [3] LC_MONETARY=Portuguese_Brazil.utf8 LC_NUMERIC=C
## [5] LC_TIME=Portuguese_Brazil.utf8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] ggrepel_0.9.5 ggbeeswarm_0.7.2 reshape2_1.4.4
## [4] doParallel_1.0.17 iterators_1.0.14 foreach_1.5.2
## [7] openxlsx_4.2.6.1 Matrix_1.6-5 ggeasy_0.1.4
## [10] variancePartition_1.32.5 BiocParallel_1.36.0 limma_3.58.1
## [13] ggpubr_0.6.0 lubridate_1.9.3 forcats_1.0.0
## [16] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2
## [19] readr_2.1.5 tidyr_1.3.1 tibble_3.2.1
## [22] ggplot2_3.5.0 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] Rdpack_2.6.1 bitops_1.0-8 rlang_1.1.3
## [4] magrittr_2.0.3 matrixStats_1.3.0 compiler_4.3.2
## [7] vctrs_0.6.5 pkgconfig_2.0.3 fastmap_1.2.0
## [10] backports_1.4.1 labeling_0.4.3 caTools_1.18.2
## [13] utf8_1.2.4 rmarkdown_2.27 tzdb_0.4.0
## [16] nloptr_2.1.1 xfun_0.46 cachem_1.1.0
## [19] jsonlite_1.8.8 EnvStats_2.8.1 highr_0.11
## [22] remaCor_0.0.18 broom_1.0.6 R6_2.5.1
## [25] bslib_0.8.0 stringi_1.8.3 car_3.1-2
## [28] boot_1.3-28.1 jquerylib_0.1.4 numDeriv_2016.8-1.1
## [31] Rcpp_1.0.12 knitr_1.48 splines_4.3.2
## [34] timechange_0.3.0 tidyselect_1.2.1 rstudioapi_0.16.0
## [37] abind_1.4-8 yaml_2.3.10 gplots_3.1.3.1
## [40] codetools_0.2-19 lattice_0.21-9 lmerTest_3.1-3
## [43] plyr_1.8.9 Biobase_2.62.0 withr_3.0.1
## [46] evaluate_0.24.0 zip_2.3.1 pillar_1.9.0
## [49] carData_3.0-5 KernSmooth_2.23-22 generics_0.1.3
## [52] hms_1.1.3 munsell_0.5.1 scales_1.3.0
## [55] aod_1.3.3 minqa_1.2.7 gtools_3.9.5
## [58] RhpcBLASctl_0.23-42 glue_1.7.0 tools_4.3.2
## [61] fANCOVA_0.6-1 lme4_1.1-35.5 ggsignif_0.6.4
## [64] mvtnorm_1.2-5 grid_4.3.2 rbibutils_2.2.16
## [67] colorspace_2.1-0 nlme_3.1-163 beeswarm_0.4.0
## [70] vipor_0.4.7 cli_3.6.2 fansi_1.0.6
## [73] corpcor_1.6.10 gtable_0.3.5 rstatix_0.7.2
## [76] sass_0.4.9 digest_0.6.36 BiocGenerics_0.48.1
## [79] pbkrtest_0.5.3 farver_2.1.1 htmltools_0.5.8.1
## [82] lifecycle_1.0.4 statmod_1.5.0 MASS_7.3-60